Safety directional valves with spool position monitoring

On-off, direct operated, conforming to Machine Directive 2006/42/EC

Direct operated safety directional valves with spool position monitoring, CE marked and certified by TÜV in accordance with safety requirements of Machine Directive 2006/42/EC.
DHI, size 06, for AC and DC supply, with cURus certified solenoids
DHE, size 06, high performances, for AC and DC supply with cURus certified solenoids
DKE, size 10, for AC and DC supply with cURus certified solenoids
The valves are equipped with $\mathbf{F I}$ inductive proximity sensor or $\mathbf{F V}$ inductive position switch for the spool position monitoring, see section 17 and 11 for sensors availability and technical characteristics.

Certification

The certificate TÜV IT $\mathbf{1 2}$ MAC0021 can be downloaded from www.atos.com, catalog on line, technical information section.
Mounting surface: ISO 4401, size 06 and 10
Max flow: DHI $60 \mathrm{l} / \mathrm{min}$
DHE $80 \mathrm{l} / \mathrm{min}$
DKE $150 \mathrm{l} / \mathrm{min}$
Max pressure: $\mathbf{3 5 0}$ bar

RANGE OF VALVE'S MODELS

Valve code	Size	Description	DC solenoids		AC solenoids	
			Sensor type			
			/FI	/FV	/FI	/FV
DHI-06	06	direct operated solenoid valves, on-off, single solenoid	-	-	-	-
DHI-07	06	direct operated solenoid valves, on-off, double solenoid	\bullet		-	
DHE-06	06	direct operated solenoid valves, on-off, single solenoid	-	-	-	-
DHE-07	06	direct operated solenoid valves, on-off, double solenoid	-	-	-	
DKE-16	10	direct operated solenoid valves, on-off, single solenoid	-	-	-	-
DKE-17	10	direct operated solenoid valves, on-off, double solenoid	-	-	-	

Notes:

FI = inductive proximity sensor, type NO (normally open) or NC (normally closed)
FV = inductive position switch providing both NO and NC contacts to be wired on the electric connector
See section 11 for sensor's characteristics

1.1 Fl sensor \& FV switch configurations

Single solenoid valves size 06 \& 10 are provided with $n^{\circ} 1 \mathrm{FI}$ sensor or $\mathrm{n}^{\circ} 1 \mathrm{FV}$ switch for the spool position monitoring

Double solenoid valves size 06 with detent are provided with $n^{\circ} 2 \mathrm{FI}$ sensors or $n^{\circ} 1 \mathrm{FV}$ switch for the spool position monitoring

Double solenoid valves size 10 with detent are provided with $n^{\circ} 1 \mathrm{Fl}$ sensor or $n^{\circ} 1 \mathrm{FV}$ switch for the spool position monitoring

For model code of DHI and DHE safety valves, see section 2 For model code of DKE safety valves, see section 4

DHI	$-\mathbf{0}$
Directional control valve size 06 DHI = max flow $60 \mathrm{IO} / \mathrm{min}$ DHE = max flow $80 \mathrm{I} / \mathrm{min}$	
Size ISO 4401 $\mathbf{0}=$ size 06	

Valve configuration, see section 3
61 = single solenoid, central plus external position, spring centered
63 = single solenoid, 2 external positions, spring offset
$67=$ single solenoid, external plus central position, spring offset
71 = double solenoid, 3 positions, spring centered $75=$ double solenoid, 2 external positions, with detent

Spool type, see section 3

63
1/2
$1 / 2$ $2 /$ A / FV * X

24DC

Voltage code, see section 9
$\mathbf{X}=$ without connector, see section 10 for available connectors, to be ordered separately

Electrical signal - only for FI version (1):
/NC = electric contact is closed when the valve is de-energized
$/ \mathrm{NO}=$ electric contact is open when the valve is de-energized

Spool position monitor:

FI = inductive proximity switch
FV = inductive position switch (double contact)
\qquad

Options, see section 6
(1) the FV inductive position switch provides both NC and NO contacts

3 CONFIGURATIONS AND SPOOLS FOR DHI AND DHE (representation according to ISO 1219-1)

3.2 Special shaped spools for DHI and DHE

- spools type $\mathbf{0}$ and $\mathbf{3}$ are also available as $\mathbf{0 / 1}$ and $\mathbf{3 / 1}$ with restricted oil passages in central position, from user ports to tank.
- spools type 1, 4,5 and 58 are also available as $1 / 1,4 / 8,5 / 1$ and 58/1.

They are properly shaped to reduce water-hammer shocks during the swiching.

- spools type $\mathbf{1 , 1 / 2 , 3 , 8}$ are available as $\mathbf{1 P}, \mathbf{1 / 2 P}, \mathbf{3 P}, \mathbf{8 P}$ to limit valve internal leakages.
- Other types of spools can be supplied on request.
3.1 Standard spool availability for DHI and DHE - spools not listed in the table are available for all valves models

Valve type	standard spool						
	09	90	39	93	49	94	1/9
DHI/FI	-	-	-	-	-	-	-
DHI/FV							
DHE/FI	-	-	-	-	-	-	-
DHE/FV							

DKE	$-\mathbf{1}$
Directional control valve size 10	
Size ISO 4401 $\mathbf{1}=$ size 10	

Valve configuration, see section 5
61 = single solenoid, central plus external position, spring centered
63 = single solenoid, 2 external positions, spring offset
$67=$ single solenoid, external plus central position, spring offset
$71=$ double solenoid, 3 positions, spring centered
$75=$ double solenoid, 2 external positions, with detent

Spool type, see section 5

Options, see section 6

$*$	

24DC

Series number
$\mathbf{X}=$ without connector, see section 10 for available connectors, to be ordered separately

Electrical signal - only for $\mathbf{F I}$ version (1):
/NC = electric contact is closed when the valve is de-energized
/NO = electric contact is open when the valve is de-energized

Spool position monitor:

FI = inductive proximity switch
FV = inductive position switch (double contact)

DKE/FI and /FV are always provided with Y drain port
(1) the FV inductive position switch provides both NC and NO contacts

5 CONFIGURATIONS AND SPOOLS FOR DKE (representation according to ISO 1219-1)

5.1 Special shaped spools for DKE

- spools type $\mathbf{0}$ and $\mathbf{3}$ are also available as $\mathbf{0 / 1}$ and $\mathbf{3 / 1}$ with restricted oil passages in central position, from user ports to tank.
- spools type $\mathbf{1}$ is also available as $\mathbf{1 / 1}$, properly shaped to reduce the water-hammer shocks during the switching.
- spool type $1 / 9$ has closed center in rest position but it avoids the pressurization of A and B ports due to the internal leakages.
- other types of spools can be supplied on request.

MAIN CHARACTERISTICS

6.1 Coils characteristics

Insulation class	$\mathbf{H}\left(180^{\circ} \mathrm{C}\right)$ for DC coils (all versions) and AC coils (only DHI)
	F $\left(155^{\circ} \mathrm{C}\right)$ for AC coils (DHE, DKE) Due to the occuring surface temperatures of the solenoid coils, the European standards EN ISO 13732-1 and EN ISO 4413 must be taken into account
Protection degree to DIN EN 60529	IP 65 (with connectors correctly assembled)
Relative duty factor	100%
Supply voltage and frequency	See electric features $\mathbf{9}$
Supply voltage tolerance	$\pm 10 \%$
Certification	cURes North American standard

7 SEALS AND HYDRAULIC FLUID - for other fluids not included in below table, consult our technical office

Seals, recommended fluid temperature	NBR seals (standard) $=-20^{\circ} \mathrm{C} \div+60^{\circ} \mathrm{C}$, with HFC hydraulic fluids $=-20^{\circ} \mathrm{C} \div+50^{\circ} \mathrm{C}$ FKM seals (/PE option) $=-20^{\circ} \mathrm{C} \div+80^{\circ} \mathrm{C}$		
Recommended viscosity	$15 \div 100 \mathrm{~mm}^{2} / \mathrm{s}$ - max allowed range $2,8 \div 500 \mathrm{~mm}^{2} / \mathrm{s}$		
Fluid contamination class	ISO 4406 class $21 / 19 / 16$ VAS 1638 class 10 , in line filters of $25 \mu \mathrm{~m}$ ($\beta 25 \geq 75$ recommended)		
Hydraulic fluid	Suitable seals type	Classification	Ref. Standard
Mineral oils	NR, FM	HL, HEP, HLPD, HVLP, HVLPD	DIN 51524
Flame resistant without water	KM	HFDU, FDR	ISO 12922
Flame resistant with water	NR	HF	

8 OPTIONS
A = Solenoid mounted at side of port B (only for single solenoid valves). In standard versions, solenoid is mounted at side of port A.
WARNING: the manual operation is not permitted for safety valves, than the valve is provided with solenoid blind rings to prevent the access to
 the manual override. The manual override protected by rubber cup (option /WP) is not available

WARNING: the inobservance of following prescriptions invalidates the certification and may represent a risk for personnel injury Safety valves must be installed and commissioned only by qualified personnel Safety valves must not be disassembled
The inductive proximity FI or the inductive position switch FV can be adjusted only by the valve's manufacturer or Altos authorized service centers
Valve's components cannot be interchanged
The valves must operate without switching shocks and spool vibrations

9.1 COILS FOR DHI AND DHE VALVES

Valve	External supply nominal voltage $\pm 10 \%$	Voltage code	Type of connector	Power consumption (3)		Code of spare coil		
				$\begin{aligned} & \text { consun } \\ & \text { DHI } \end{aligned}$	ion (3) DHE	DHI	Colour of coil label DHI	DHE
$\begin{aligned} & \text { DHI } \\ & \text { DHE } \end{aligned}$	6 DC	6 DC (4)	$\begin{gathered} 666 \\ \text { or } \\ 667 \end{gathered}$	33 W	30 W	COU-6DC	brown	-
	12 DC	12 DC				COU-12DC	green	COE-12DC
	14 DC	14 DC				COU-14DC	brown	COE-14DC
	24 DC	24 DC				COU-24DC	red	COE-24DC
	28 DC	28 DC				COU-28DC	silver	COE-28DC
	48 DC	48 DC				COU-48DC	silver	COE-48DC
	110 DC	110 DC				COU-110DC	gold	COE-110DC
	125 DC	125 DC				COU-125DC	blue	COE-125DC
	220 DC	220 DC				COU-220DC	black	COE-220DC
	24/50 AC	24/50/60 AC (4)		60 VA	-	COI-24/50/60AC (1)	pink	-
	24/60 AC							
	48/50 AC	48/50/60 AC (4)				COI-48/50/60AC (1)	white	-
	48/60 AC							
	110/50 AC	110/50/60 AC			58 VA	COI-110/50/60AC (1)	yellow	COE-110/50/60AC
	115/60 AC (5)	115/60 AC		-	80 VA	-		COE-115/60AC
	120/60 AC (4)	120/60 AC		60 VA	-	COI-120/60AC	white	-
	230/50 AC	230/50/60 AC			58 VA	COI-230/50/60AC (1)	light blue	COE-230/50/60AC
	230/60 AC	230/60 AC			80 VA	COI-230/60AC	silver	COE-230/60AC
	110/50 AC	110RC	669	33 W	30 W	COU-110RC	gold	COE-110RC
	120/60 AC							
	230/50 AC	230RC				COU-230RC	blue	COE-230RC

(1) Coil can be supplied also with 60 Hz of voltage frequency: in this case the performances are reduced by $10 \div 15 \%$ and the power consumption is 55 VA (DHI) and 58 VA (DHE)
(2) Average values based on tests performed at nominal hydraulic condition and ambient/coil temperature of $20^{\circ} \mathrm{C}$.
(3) When solenoid is energized, the inrush current is approx 3 times the holding current. Inrush current values correspond to a power consumption of about 150 VA .
(4) Only for DHI
(5) Only for DHE
9.2 COILS FOR DKE VALVE

External supply nominal voltage $\pm 10 \%$	Voltage code	Type of connector	Power consumption (2)	Code of spare coil
12 DC	12 DC	$\begin{gathered} 666 \\ \text { or } \\ 667 \end{gathered}$	36 W	CAE-12DC
14 DC	14 DC			CAE-14DC
24 DC	24 DC			CAE-24DC
28 DC	28 DC			CAE-28DC
110 DC	110 DC			CAE-110DC
125 DC	125 DC			CAE-125 DC
220 DC	220 DC			CAE-220DC
110/50/60 AC	110/50/60 AC		$100 \mathrm{VA}$(3)	CAE-110/50/60AC (1)
230/50/60 AC	230/50/60 AC			CAE-230/50/60AC (1)
115/60 AC	115/60 AC		$\begin{gathered} 130 \mathrm{VA} \\ (3) \end{gathered}$	CAE-115/60AC
230/60 AC	230/60 AC			CAE-230/60AC
110/50/60 AC	110 DC	669	36 W	CAE-110DC
230/50/60 AC	220 DC			CAE-220DC

(1) In case of 60 Hz voltage frequency the performances are reduced by $10 \div 15 \%$ and the power consumption is 90 VA
(2) Average values based on tests performed at nominal hydraulic condition and ambient/coil temperature of $20^{\circ} \mathrm{C}$.
(3) When solenoid is energized, the inrush current is approx 3 times the holding current.

10 COILS ELECTRIC CONNECTORS - according to din 43650 (to be ordered separately)

11 TECHNICAL CHARACTERISTICS OF INDUCTIVE PROXIMITY AND POSITION SWITCHES

Type of switch	/FI proximity sensor	$4 \text { GND }$	/FV position	/FV scheme
Supply voltage [V]	$10 \div 30$		20 $\div 32$	
Ripple max [\%]	≤ 20		≤ 10	
Max current [mA]	200		400	
Max peak pressure [bar]	100		400	
Mechanical life	virtually infinite		virtually infinite	
Switch logic	PNP		PNP	- 3
	1 output signal 2 supply +24 VDC		1 supply +24 VDC 2 output signal	3 GND 4 output signal

12 CONNECTING SCHEMES OF INDUCTIVE PROXIMITY AND POSITION SWITCHES - FI and FV sensor's connector are always supplied with the valve

DH*/FI single solenoid / double solenoid (dotted line)	/FV (all valves) single solenoid	/FV (all valves) double solenoid	DKE/FI single solenoid	DKE/FI double solenoid
Connector type 345 b 1 =output signal 2 =supply +24 VDC 3 = output signal for double solenoid $4 \text { = GND }$	Connector type ZBE-06 IP65 $\begin{aligned} & 1=\text { supply }+24 \text { VDC } \\ & 2=\text { output signal NC } \\ & 3=\text { GND } \\ & 4=\text { output signal NO } \end{aligned}$	Connector type ZBE-06 $\begin{aligned} & 1=\text { supply }+24 \mathrm{VDC} \\ & 2=\text { output signal sol. } \mathbf{b} \\ & 3=\text { GND } \\ & 4=\text { output signal sol. } \mathbf{a} \end{aligned}$	Connector type 666 $\begin{aligned} 1 & =\text { output signal S } \\ 2 & =\text { supply }+24 \mathrm{VDC} \\ (-) & =\text { GND } \end{aligned}$	Connector type 664 $\begin{aligned} 1 & =\text { output signal sol.a } \\ 2 & =\text { supply }+24 \mathrm{VDC} \\ 3 & =\text { output signal sol. } \cdot \mathbf{b} \\ \epsilon & =\text { GND } \end{aligned}$

NOTE: the /FI proximity and /FV position switch are not provided with a protective earth connection

13 STATUS OF OUTPUT SIGNAL
13.1 Signal status for FI versions

Diagrams show the behaviour of the output signal for inductive switches type FI/NO
For inductive switches type FI/NC the behaviour is opposite (high level signal instead of low level signal and viceversa)
13.2 Signal status for FV versions

Note: FV position switch can be electrically wired by the customer as NO or NC and then the status of the output signal will be in accordance to the selected configuration
$\square=$ intermediate spool position corresponding to the hydraulic configuration change

14 Q/AP DIAGRAMS based on mineral oil ISO VG 46 at $50^{\circ} \mathrm{C}$

DHI

Flow direction	$\mathbf{P} \rightarrow \mathbf{A}$	$\mathbf{P} \rightarrow \mathbf{B}$	$\mathbf{A} \rightarrow \mathbf{T}$	$\mathbf{B} \rightarrow \mathbf{T}$	$\mathbf{P} \rightarrow \mathbf{T}$
$0,0 / 1$	C	C	C	C	
$0 / 2,1,1 / 1,1 / 2,1 / 9$	A	A	A	A	
$2,3,3 / 1$	A	A	C	C	
$2 / 2,4,4 / 8,5,5 / 1,58,58 / 1,94$	D	D	D	D	A
$6,7,16,17$	A	A	C	A	
8	C	C	B	B	
$09,19,90,91$	B	B	A	A	
39,93	D	D	D	D	

DHE

Spool type	Flow direction	$\mathbf{P} \rightarrow \mathbf{A}$	$\mathbf{P} \rightarrow \mathbf{B}$	$\mathbf{A} \rightarrow \mathbf{T}$	$\mathbf{B} \rightarrow \mathbf{T}$
$\mathbf{P} \rightarrow \mathbf{T}$					
$0,0 / 1$	A	A	C	C	D
$1,1 / 1,1 / 9$	D	C	C	C	
$3,3 / 1$	D	D	A	A	
$4,4 / 8,5,5 / 1,49,58,58 / 1,94$	F	F	G	C	E
$1 / 2,0 / 2$	D	D	D	D	
$6,7,16,17$	D	D	D	D	
8	A	A	E	E	
2	D	D			
$2 / 2$	F	F			
$09,19,90,91$	E	E	D	D	
39,93	F	F	G	G	

DKE

Spool type	Flow direction	$\mathbf{P} \rightarrow \mathbf{A}$	$\mathbf{P} \rightarrow \mathbf{B}$	$\mathbf{A} \rightarrow \mathbf{T}$	$\mathbf{B} \rightarrow \mathbf{T}$	$\mathbf{P} \rightarrow \mathbf{T}$
$\mathbf{B} \rightarrow \mathbf{A}$						
$0,0 / 1,0 / 2,2 / 2$	A	A	B	B		
$1,1 / 1,1 / 9,6,8$	A	A	D	C		
$3,3 / 1,7$	A	A	C	D		
4	B	B	B	B	F	
5,58	A	B	C	C	G	
$1 / 2$	B	C	C	B		
19,91	E	E	G	G		H
39,93	F	F	G	G		H

15 OPERATING LIMITS based on mineral oil ISO VG 46 at $50^{\circ} \mathrm{C}$
The diagrams have been obtained with warm solenoids and power supply at lowest value ($\mathrm{V}_{\text {nom }}-10 \%$). The curves refer to application with symmetrical flow through the valve (i.e. $\mathrm{P} \rightarrow \mathrm{A}$ and $\mathrm{B} \rightarrow \mathrm{T}$). In case of asymmetric flow and if the valves have the devices for controlling the switching times the operating limits must be reduced.

DHI	
Curve	Spool type
A	$0,1,1 / 2,8$
B	$0 / 1,0 / 2,1 / 1,1 / 9,3,3 / 1$
C	$4,4 / 8,5,5 / 1,6,7,16,17,19,39,49,58$,
D	$28 / 1,09,90,91,93,94$

DHE

Curve	AC	Spool type
A	$1,1 / 2,8$	$0,0 / 1,1,1 / 2,3,8$
B	$0,0 / 1,0 / 2$, $1 / 1,1 / 9,3$	$0 / 2,1 / 1,6,7,1 / 9,19$
C	$3,3 / 1,6,7$	$3 / 1,4,4 / 8,5,5 / 1,16$, $17,19,39,49,58,58 / 1$, $09,90,91,93,94$
D	$4,4 / 8,5,5 / 1,16,17$, $19,39,58,58 / 1,09$, $90,91,93,94$	$2,2 / 2$
E	$2,2 / 2$	-

DKE		
Curve	AC	Spool type
A	$0 / 1$	$0,0 / 1,1,1 / 1,3,3 / 1,1 / 2,0 / 2,8$
B	$4,5,19,91$	6,7
C	$0,1 / 1,3,3 / 1$	19,91
D	$1,1 / 2,0 / 2$	4,5
E	$6,7,8,2 / 2$	$2 / 2$

ISO 4401: 2005
Mounting surface: 4401-03-02-0-05
Fastening bolts:
4 socket head screws: M5 $\times 50$ class 12.9 (DHI) M5x30 class 12.9 (DHE)
Tightening torque $=8 \mathrm{Nm}$
Seals: 4 OR 108
Ports P,A,B,T: $\varnothing=7.5 \mathrm{~mm}$ (max)

DHI-06*/FI (DC, AC)
DHI-07*/FI (DC, AC) dotted line

DHI-06*/FV (DC, AC)

DHE-06*/FI (DC)
DHE-07*/FI (DC) dotted line

DHE-07*/FV (DC)

DHE-06*/FI (AC)
DHE-07*/FI (AC) dotted line

DHE-06*/FV (AC)

